

## Energy and Petroleum Consumption Attributes of Plug-in Hybrids

Presented at:

#### CARB PHEV Discussion Meeting

Sept. 27, Sacramento CA

Danilo J. Santini

Section Leader, Technology Analysis

Center for Transportation Research

Sponsor: Office of Freedom Car and Vehicle Technologies

U.S. Department of Energy

E. Wall, Program Manager, Office of Freedom Car and Vehicle Technologies

T. Duong, Team Leader, Vehicle Systems Technologies







## Many Questions and Technology Options Were Not Previously Examined

- Items not addressed in 2001 studies by EPRI and Argonne
  - Li-ion batteries
  - Varying electric operations capabilities top speed, acceleration rate
  - Effects of highly variable, often wide SOC swings on battery power/life
  - Multiple HEV powertrain configurations
  - In-use vs. certification cycle fuel economy
  - Charge depletion w/o EV only operation ("blended mode")
  - Incremental cost/benefit evaluations
  - Towing requirement effects
  - Isolation of HEV vs. PHEV incremental benefit/cost
  - Urban vs. non-urban & morning vs. other emissions
  - Detailed comparison of trip characteristics to potential PHEV capabilities

## **Topics**

- Why the expanding interest in PHEVs?
- Would massive success with PHEVs stress power generation?
- Would massive success stress the grid?
- What new sources of power would be favored for expansion?
- How will pattern of driving interact with desired PHEV capability?
- How would successful R&D, achieving cost reduction, affect patterns of PHEV preference?
- Illustrations of some of the technical problems to address



# Why more interest in plug-in hybrids with new EPACT legislation authorizing new government/industry programs?

- Oil savings (heightened interest due to oil price increases)
- Focus of 2001 studies: CA desire for zero tailpipe emissions
- Greenhouse gas reductions (cumulative climate change science)
- Electric utility efficiency (load leveling)
- Emergency services (hurricanes, power failures, spot gasoline shortages)
- Improvements in li-ion battery technology
  - (li-ion eclipses NiMH in consumer electronics)

## Oil Savings: Each PHEV (Full HEV) Sharply Reduces Oil Use Even If No Electricity is Used, Far More if Electricity is Used





### Oil Use, Electric Generation Expansion, Change in Power Plant Mix and Greenhouse Gases With PHEVs in Future Decades:

3 National Lab PHEV Scenario Analyses

(Others coming from EPRI, from EPA, more from National Labs)

### Studies from National Labs

Possible long-and short-term incremental impacts of PHEVs

Short-term: Power plant dispatch choice

Coal is presently cheapest

Combined cycle natural gas is available, clean, but more costly

#### Long-term:

Acceleration of efficient, clean advanced base load plants likely Wind appears to match very well with PHEVs

Oil use will certainly decline

GHGs can decline in the short term, probably <u>will</u> significantly decline in the long term.



# PNNL Electric Infrastructure Capability Study Early Findings Show >> National Reserve Capacity to Serve PHEVs Than Needed, But ...

### **Preliminary conclusions:**

- Idle grid capacity (generation, T&D) is adequate to supply ~50% - 65% (or more) of energy for U.S. cars and light trucks at hybrid performance levels
- There are <u>significant</u> regional differences based on varying reserve margins across regions
- Todays' CO<sub>2</sub> impacts approximately neutral for today's baseload and intermediate plants (10% above or below current emissions depending on region)
- Significant issues for coordinating vehicle charging with grid peak loads, reliability needs, and market and other signals



# What Could The Effect on Oil Use, Electric Generation, and Carbon Emissions Be if Massive Success of PHEVs Were Achieved?

#### "What If" scenarios

AMIGA Scenario by Argonne

WinDS Scenario by NREL







## Massive Success Requires a Few Percent Increase in Total Generation, Leads to Significant Use of Wind Power

### Summary of 2050 WinDS/PHEV Results – PHEV Cases Compared to Base Case

| 2050 Projected Values                                                      | Base Case<br>(no PHEVs) | PHEV-20 Case                                | PHEV-60 Case                                 |
|----------------------------------------------------------------------------|-------------------------|---------------------------------------------|----------------------------------------------|
| Gasoline use<br>(Billions of Gallons)                                      | 368                     | 255<br>(31% decrease)                       | 212<br>(43% decrease)                        |
| Wind Generation (TWh/year)                                                 | 757                     | 853<br>(13% increase)                       | 1554<br>(105% increase)                      |
| Total Load (TWh/year)                                                      | 9392                    | 9808<br>(4.4% increase<br>due to PHEV load) | 10082<br>(7.3% increase due to<br>PHEV load) |
| Increase of Wind Electricity vs. Base Case                                 | -                       | 0.6%                                        | 7.5%                                         |
| Total Installed Generation Capacity (GW)                                   | 2161                    | 2092                                        | 1972                                         |
| Generation from Coal (TWh/year)                                            | 8272                    | 8597<br>(3.9% increase)                     | 8169<br>(1% decrease)                        |
| Electric and Light Duty<br>Transport Sector CO2<br>(Million Tons CO2/year) | 10956                   | 9910<br>(9.5% decrease)                     | 9346<br>(14.7% decrease)                     |

# With A Higher PHEV Penetration Scenario Than in WinDS, AMIGA Obtains Higher Oil Savings (also by Including Coal-to-Liquids for Co-Production of Diesel Fuel and Electricity)





## What Should be Assumed to be the Long Term Incremental Source of PHEV Electricity?

#### PREDICTED CONTRACTING & STABLE SHARES IF PHEVs SUCCEED

- Coal: AMIGA and WinDS PHEV60 cases predict reduced coal use
- Nuclear: WinDS decline, AMIGA steady production share
- Oil and Gas: WinDS uses AEO declines for "oil-gas-steam" power plants, and assumed a high gas price, shrinking other natural gas

#### PREDICTED INCREASING SHARES

- Wind
  - Both AMIGA and WinDS predict more expansion of wind than natural gas or "other" (renewable) power generation
- Other (hydro, biomass, geothermal, waste to electricity, solar)
  - AMIGA predicts an increase
- Natural Gas
  - AMIGA predicts some expansion of natural gas



# If Natural Gas is Used to Create Vehicle Fuels, NGCC-derived Electricity for PHEVs Can Result in Less Depletion of Natural Gas, Less GHGs/Mile



Question: Should PHEV design strategy be to satisfy a national market with a focus on oil use and perhaps GHGs, allowing "blended" charge depletion control strategies?

Or (and) should there be a design strategy be for key urban markets with poor air quality, requiring on ZEV charge depletion?

### Simulation of a Hypothetical Prius PHEV Conversion Implies Intermittent Engine Starts and Relatively Slow Battery Depletion on UDDS



Implication: a "blended" control strategy takes more miles to use stored grid electricity.



## Average National Miles Per Day > 30 Miles, But Typically Composed of Several Short Trips

- Instrumented vehicle results
  - Baltimore 4.0-5.9 mi.- average of 4.9
  - Spokane 3.6 mi.
  - Atlanta 6.0 mi.
- EPA MOVES 2004 assumptions
  - Passenger cars: 4.4 mi., 7 starts/ average day
  - Light trucks < 6000 lb: 4.8 mi., 7 starts/ average day</li>
  - Light trucks > 6000 lb: 4.6 mi., 7 starts/ average day

### Derivative questions relating to PHEV design, benefits:

How many of the day's starts are "cold"?
How many of the trips could be in EV mode?
What is top speed of short trips?



### Garages & PHEVs: Detached Single Home Dwellers Make More Trips per Vehicle



Source: 2001 National Household Transportation Survey



## The Share of Vehicles Affiliated with Detached Single Homes Drops At High Population Density



## Vehicle Speed Drops As Population Density Increases. However .....



## Think Differently About HEV/PHEV Fuel Advantage: Hrs/Driving are Key, Not the Miles

Note: Observation from U.S. NPTS and International studies: Hours per day are relatively constant across drivers in the U.S. and on average across nations



Predicted Hourly Fuel Savings by Switching from a Conventional Vehicle to Hybrid, by Driving Cycle

From Argonne Hybrid Electric Vehicle Technology Assessment, 2001



## On Average, Hours per Vehicle Per Day are Relatively Constant Across Population Densities



## > = 22 Miles/Day/Vehicle, the Time in the Vehicle is an Hour and Above



### U.S. Average Electric Rates Imply Considerable Per Mile Savings for PHEV20 Electricity Use at Present Gasoline Prices





## The Ability to Pull Electricity From a Battery to Move a Vehicle is Related to Power. Below Demanded Power, Less Power = More Time to Use a kWh. Battery Power Drops with DOD



Example: PHEV10 vs. HEV0, Li-ion pack simulation

Source: Plug-in HEVs: A Near-Term Option to Reduce Petroleum Consumption. T. Markel et al. NREL 05 Milestone Report, Jan., 19, 2006



## Considering EPRI HEV Type Market Share Estimates, Which PHEV Would Save Most Oil?





Mid-size car – HEV powertrain paired against the conventional (no other HEV competitor)



# As the Range of PHEVs Rises, the Needed Battery Power to Energy Ratio Declines. (This reduces \$/kWh costs [not shown])



### As Powertrain (Battery!) Costs Drop, EPRI Predicted Share of All HEVs Rises. For Long Commutes, Low Costs, PHEV60s Close the Gap



## Summary on PHEV Range and Market Opportunities

- Average daily mileage is > 30 miles
- Vehicles driven from single family dwellings are driven more miles
- Detached single dwelling units are affiliated with a smaller portion of vehicles in the densest urban areas
- EPRI consumer preferences analysis indicated a subset of surveyed <u>urban</u> drivers with short commutes, with total driving averaging ~ 20 mi/day, had greatest interest in PHEV20s over HEVs, and consistently prefer PHEV20s over PHEV60s, regardless of price. Nevertheless, is this the right customer base to target?
- The EPRI survey also indicated that if less expensive batteries and PHEV powertrains emerge from R&D, a significant expansion of the market for longer range PHEVs could be realized among long range commuters.
- For long range commuters, in the EPRI low powertrain cost case (battery R&D success), PHEV60s were as likely to be chosen as PHEV20s.

